
Bacherlor’s Thesis Report

Development of a tool for the parallel
procedural generation of worlds inside
a game engine and its application to a

video game

Álvaro Chuan Díaz-Maroto

Bachelor’s Thesis

Bachelor’s Degree in Video Game Design and Development

Universidad Jaume I

June 27, 2025

Project supervised by: Miguel Chover Sellés

To my friends and family.

Acknowledgments

Videogames have been an essential part of my life since my parents gifted
me, my first videogame console, a Nintendo DS. It wasn’t a surprise for my
parents the day I told them I wanted to be a game developer, in fact, they
helped me find this degree and prepare for it. Without them and my family,
I could never have attended this university and follow my dreams, so first I
would like to thank my parents for giving me this opportunity and supporting
me through my whole journey here.

Apart from my family, I would like to thank all my friends, specially Lucía
and Mario, sharing the same house for 3 years was definitely an experience I
won’t forget in my life. For you Mario, I can’t stress enough how thankful I am
for working with me in almost every single university project, we have cried of
laughter and lost our minds over bugs way too many times. I would also like to
thank Paco, even though each of us ended up in opposite sides of the Valencian
Community, you’ve been there for me at any moment given, no matter the
distance or the time we expend without talking, our friendship never changes.
In addition, I could not forget to thank my good old friend Ruben, you are
one of the reasons I entered this career, and you always supported my work.
We made a promise a long time ago, I would code the games, and you would
make the music for them. You are no longer here with us to accomplish that
promise, but I still keep it in mind, I will never forget you.

I would also like to thank all the good friends that I’ve made along the way,
Edward, Raúl, Victor, Christian, Diego, Joan, Jorge, Sergio, Alan, Mar and
Alex, you are the best group of game developers and classmates that I could
have ever asked for. I know that some day, BackToBits will get to something.

Last but not less important, I would like to thank you, Eva. You’ve been
there on my highest and my lowest, you’ve always supported me even when I
was trying to do things that were clearly out of my possibilities, your support
has been essential for me to be here today.

Finally, I would also like to thank my Bachelor’s Thesis Supervisor Miguel
Chover for his support here and in my internship at INIT. Maria Villar for her

i

ii

support and investigation on the same matter and all my internship coworkers
for the great time I’ve spent there, I would love to work with you again in the
future. Also thank Sergio Barrachina Mir for his «LATEX Template for writing
the Bachelor’s thesis», that has been used to write this memory.

http://lorca.act.uji.es/curso/latex/
http://lorca.act.uji.es/curso/latex/

Abstract

This Bachelor’s Thesis presents the development of a tool for the procedu-
ral generation of 3D environments using a GPU-parallelized version of the
Wave Function Collapse algorithm, integrated within the Unity engine. The
tool enables users to define custom tile sets and adjacency rules to generate
worlds, offering an intuitive interface to manage tile and world creation. To
validate the tool, a complete 3D top-down video game titled System Escape
was developed. This game demonstrates the tool’s capabilities through proce-
durally generated planets within a dying solar system, where the player must
escape before a supernova occurs. The game integrates resource collection,
combat, upgrades, and survival mechanics. The tool significantly reduces de-
velopment time while ensuring creative freedom and performance scalability.
Performance tests show substantial improvements over CPU-based implemen-
tations, and the modular nature of the tool makes it suitable for a wide variety
of game genres. This project highlights the potential of combining GPU com-
puting with procedural generation techniques, and aims to contribute a robust
and accessible asset to the Unity development community.

iii

Contents

Contents v

1 Introduction 1
1.1 Project Motivation . 2
1.2 Related Subjects . 2
1.3 Project objectives . 3
1.4 Task Planning and Scheduling 3
1.5 Expected results . 5
1.6 Tools to be used . 5

2 Design 7
2.1 Wave Function Collapse 2D algorithm 7
2.2 Wave Function Collapse 2D parallelization 8
2.3 Wave Function Collapse 3D algorithm 10
2.4 Wave Function Collapse 3D parallelization 13
2.5 Unity tool . 13
2.6 Videogame . 18

3 Tool development 37
3.1 WFC compute shader adaptation 37
3.2 Shader management in the CPU side 40
3.3 Chunks generation mode . 43
3.4 User interface . 45
3.5 Tool results . 49

4 Game development 51
4.1 Player movement . 51
4.2 Resource gathering . 53
4.3 Combat . 54
4.4 Upgrade system . 55
4.5 Spaceship movement . 56
4.6 Game loop . 57
4.7 Interface . 57
4.8 Sound system . 58

v

vi Contents

4.9 2D art . 59
4.10 3D art . 60
4.11 Results . 62

5 Conclusions and future work 65
5.1 Conclusions . 65
5.2 Future work . 66

Bibliography 67

6 Project repositories 69

C
h

a
p

t
e

r

1
Introduction

Índice
1.1 Project Motivation . 2
1.2 Related Subjects . 2
1.3 Project objectives . 3
1.4 Task Planning and Scheduling 3
1.5 Expected results . 5
1.6 Tools to be used . 5

This project aims to develop a tool for the Unity 3D game engine that
allows users to procedurally generate finite environments using a parallelized
version of the Wave Function Collapse algorithm, in a simple and user-friendly
manner through a customized and intuitive interface.

As an application of this tool, a 3D top-down video game will be developed,
featuring a low-poly, cartoon-style aesthetic and belonging to the adventure
and space exploration genres. The game will take place in a solar system
whose central star is near the end of its life cycle. The player’s objective will
be to escape the solar system before the supernova occurs. To do so, the
player will embark on a spaceship and travel across various planets within the
system, facing enemies and collecting materials to upgrade both their personal
equipment and their spaceship. These planets will be generated using the
aforementioned tool, thereby serving as a demonstration of its applied use
within a video game context.

1

2 Introduction

1.1 Project Motivation
Procedural content generation is a field that is increasingly being explored
within the realm of video games. Examples of this trend include titles such
as No Man’s Sky, Minecraft, Astroneer, Terraria, Dwarf Fortress, and the ma-
jority of existing roguelikes. However, all of these games have had to develop
their own generation systems from scratch. This project seeks to eliminate
that burden for developers by providing them with an effective and intuitive
tool that enables the creation of game worlds without the need to implement
such systems manually.

Regarding the game included in this project, the primary motivation is to
demonstrate how the application of this tool can yield solid results and accel-
erate the development process, while maintaining a high standard of quality in
the final product. At the same time, it aims to create a game that is engaging
and appealing to a broad audience.

1.2 Related Subjects

Subject Explanation
VJ1208 - Programming
II

This course is essential for learning to use the
C# programming language, which is used in
Unity.

VJ1215 - Algorithms
and Data Structures

Although different programming languages and
algorithms are used compared to those covered
in the course, algorithmic thinking and a solid
understanding of data structures are crucial for
developing a tool optimized for use by any user.

VJ1216 - 3D Design The content of this course encompasses every-
thing related to the creation of 3D assets for
implementation in video games, making it fun-
damental for the development of the demonstra-
tion game included with the tool.

VJ1221 - Computer
Graphics

To optimize the Wave Function Collapse algo-
rithm, it is necessary to run it in parallel across
multiple threads. While this could be done on
the CPU, it will be executed on the GPU for bet-
ter performance. Therefore, this course is essen-
tial for understanding the types of data handled
by the GPU and how to work with them using
shaders.

1.3. Project objectives 3

Triple Project This integrates the courses VJ1222 - Concep-
tual Design of Video Games, VJ1223 - Game
Art, and VJ1224 - Software Engineering. This
project represents the real-world project we un-
dertake as students during the degree and estab-
lishes the foundation for good organization and
professional working practices.

VJ1227 - Game
Engines

Since both the tool and the game will be devel-
oped using the Unity 3D engine, this course is
key, as it teaches students how the engine works
in depth.

Table 1.1: Related Subjects

1.3 Project objectives
• Develop a parallelized version of the Wave Function Collapse algorithm

capable of generating procedural finite worlds.
– Implement this parallelized version of the algorithm into a shader

to shift the computational load to the GPU, allowing a faster world
generation.

• Develop a Unity Tool that allows the users to use the parallelized Wave
Function Collapse algorithm easily.

– Design a logical graphical user interface that allows interaction with
the tool without requiring the user to understand its internal work-
ings.

• Create a visually and mechanically engaging video game capable of show-
casing the results achieved with the tool, while also providing an inter-
esting and appealing gameplay experience.

1.4 Task Planning and Scheduling
This planning is an approximation of what will ultimately be the actual project
schedule, as accurately estimating timelines for the development of both a tool
and a game involves a degree of uncertainty. The total estimated workload is
400 hours, 100 hours more than what is outlined in the academic curriculum.
However, I am more than willing to dedicate this additional time, as this is
a project I am truly passionate about and believe is worth the extra effort.
Final time tracking will be conducted using Jira software.

4 Introduction

Table 1.2: Scheduling

Preparation (5 hours)
Technical proposal (5
hours)

Drafting of the technical proposal and outlining
the structure of the project

Preproduction (55 hours)
WFC Research (30
hours)

In-depth research on the implementation and
parallelization of the Wave Function Collapse al-
gorithm

Game Design
Document (GDD) (25
hours)

Full drafting of the Game Design Document for
the demonstration video game

Production (230 hours)
Programming and
Parallelization of the
WFC Algorithm on
GPU (125 hours)

Implementation of a GPU-parallelized version of
the Wave Function Collapse algorithm for pro-
cedural world generation

Graphical Interface
Programming for the
Tool in Unity (15
hours)

Development of a custom editor for the Wave
Function Collapse tool in Unity

3D Asset Modeling and
Texturing (30 hours)

Creation and texturing of the 3D models to be
used in the demonstration game

Programming of Core
Game Mechanics (40
hours)

Implementation of the game’s main mechanics,
including player, world, and enemy behavior

Shader Programming
for the Game (10
hours)

Development of URP shaders to enhance the
game’s overall visual appearance

2D Asset Design (10
hours)

Creation of the 2D assets used in the game’s user
interface

Post-production (35 hours)
Publishing the Tool on
the Unity Asset Store
(10 hours)

Preparation of the required documentation and
final adjustments for publishing the tool on the
Unity Asset Store

Sound Design (5 hours) Selection and implementation of the game’s au-
dio components

Game Polishing (20
hours)

Addition of subtle effects and quality-of-life im-
provements to enhance the user experience

Testing and Optimization (20 hours)
Testing (20 hours) Time allocated to ensure the proper function-

ality and performance of both the tool and the
game

1.5. Expected results 5

Documentation (45 hours)
Biweekly Reports (10
hours)

Drafting of project progress reports

Final Project Report
(30 hours)

Writing of the complete final project document

Presentation and
Defense (5 hours)

Preparation of the presentation and recording of
the defense video

1.5 Expected results
• A tool capable of generating finite worlds, based on a collection of user-

created three-dimensional tiles and their corresponding adjacency rules.
• A user interface designed to provide intuitive and straightforward control

over the tool’s output.
• A visually and mechanically engaging video game that showcases the

capabilities of the aforementioned tool, while also delivering a satisfying
user experience in line with the quality standards expected of a vertical
slice.

1.6 Tools to be used
Programming and implementation

• Unity 6
• Visual Studio Code
• GitHub Desktop

Art 2D and 3D

• Blender
• Krita

Documentation writing

• Google Docs
• Overleaf

Organization

• Jira

C
h

a
p

t
e

r

2
Design

Índice
2.1 Wave Function Collapse 2D algorithm 7
2.2 Wave Function Collapse 2D parallelization 8
2.3 Wave Function Collapse 3D algorithm 10
2.4 Wave Function Collapse 3D parallelization 13
2.5 Unity tool . 13
2.6 Videogame . 18

This bachelor’s thesis is composed of two separate parts, the creation of
a Unity tool that allows the use of the wave function collapse algorithm par-
allelized in the GPU to generate worlds automatically and the creation of a
video game that uses this tool to showcase its potential while delivering a
satisfying player’s experience.

2.1 Wave Function Collapse 2D algorithm

The WFC algorithm was originally created by Maxim Gumin in 2016 [Gum16].
Gumin introduced two versions of the algorithm, both oriented towards tex-
ture synthesis. The first version examined a sample texture and created new
textures, maintaining the same patterns and structure as the original sample,
while the other version of the algorithm achieved a similar result using a set
of tiles and adjacency rules given by the user.

Both versions were built on top of the work done by Paul Merrell’s

7

8 Design

Model Synthesis [Mer07] but we will be only focusing on the tiled version
presented by Gumin, as it is the one used in our tool.

(a) Initial grid (b) First cell collapsed (c) More cells collapsed

(d) Tiles

Figure 2.1: 2D WFC example

This version of the algorithm works with a given set of tiles and its ad-
jacency rules, we will refer to these set of tiles as tilesets for the rest of the
document. These rules indicate which tiles can be next to each other, so for
each side of the cell, we will have a set of possible neighbor tiles. Once all is
set, the algorithm stores the initial map as a grid of cells that can initially
be any tile from the tileset. The algorithm uses the amount of possible cells
of each tile as the criteria to decide which tile to collapse, we will name this
criteria entropy. The cell with less entropy is always selected for its collapse,
initially all cells have the same entropy, so a random cell is collapsed, meaning
that one of its possible tiles is selected as the final tile. This change affects all
cells in the grid as their possible tiles might change to accommodate the new
change, cells adjacent to the collapsed one will only have as possible tiles the
valid neighbors of the collapsed cell. The same rule applies to all cells towards
their respective adjacent cells. This cascade effect is what gives the algorithm
the Wave Function name, as all changes propagate to the whole grid. Figure
2.1 shows an example of the algorithm applied to a 2D grid.

2.2 Wave Function Collapse 2D parallelization

As explained in section 2.1, the WFC algorithm needs to propagate each
cell collapse to all cells in the grid to ensure proper generation, making all
cells dependent on the others of the grid. This global dependency makes the
parallelization of the WFC algorithm a difficult task, as the division of the
work load must be made carefully to ensure the effects of each cell collapse

2.2. Wave Function Collapse 2D parallelization 9

are properly applied in the grid. B. T. Brave [Bra21] proposed the following
solution for this matter.

(a) Parallel step 1 (b) Parallel step 2 (c) Parallel step 3

(d) Parallel step 4 (e) Parallel step 5 (f) Parallel step 6

(g) Parallel step 7 (h) Parallel step 8

Figure 2.2: 2D WFC example

The algorithm will generate 4x4 chunks of the grid with a gap of one cell
between all chunks all at once. This means that each thread will execute the
original WFC algorithm within the cells contained in each chunk, limiting the
propagation of changes in each chunk’s region. This method avoids possible
simultaneous memory readings / writings by different threads, as the cells
forming the boundaries of each chunk won’t be modified.

In order to generate the remaining cells, this previous step will be repeated
three more times, each time with an offset of two cells to the right, two cells
to the top and two cells to the right and top respectively. In each step, each
chunk region is reset to the original tile possibilities for each cell to ensure a
clean generation. Even though some of the work done by previous steps is
being discarded, some of the previous work is kept due to the offset, allowing
to follow the adjacency rules of the remaining cells and generating a new area
in each step. Figure 2.2 shows a visual representation of this method extracted

10 Design

from the B. T. Brave’s website.

2.3 Wave Function Collapse 3D algorithm

The tool aims to generate 3D environments, so a 3D version of the algorithm
is needed. The 3D version of the WFC algorithm builds on top of the original
2D algorithm, adding a new dimension, meaning that the cell grid becomes a
tridimensional matrix and each cell will have six adjacent cells instead of four.
Apart from that, the algorithm remains the same, each time a cell collapses its
possible tiles into a single tile, all its adjacent cells will update their possible
tiles and so on.

While the algorithm doesn’t change much between its 2D and 3D versions,
these two new adjacent cells increment the difficulty of setting the adjacency
rules for each tile, as their six faces will need their own set of possible neighbor
tiles specified by the user. While this could be done by hand, it is unreasonable
to do it, specially when tilesets contain large amounts of tiles.

(a) Tile with sockets (b) Tile with sockets

Figure 2.3: Sockets example

To solve this problem and according to the previous work of María Villar
[Lóp25], a new element must be added to each face of the tiles. This element
will be named socket and will be used to automatically generate the possible
neighbors of each tile face for each tile of the tileset. Sockets have several
properties that help define the adjacency rules of the tile face they are attached
to. Figure 2.3 shows a visual representation of the sockets each tile would have.

These socket properties vary depending on the axis alignment of the face
the socket is attached to, so a distinction between horizontal (back, right, front
and left) and vertical (bottom and top) faces is made. Both type of faces have
the most important property of the sockets, the socket type, as for a tile to
be considered as a possible neighbor of another tile face, their corresponding

2.3. Wave Function Collapse 3D algorithm 11

(a) Tile with socket types

(b) Valid neighbor (c) Invalid neighbor

Figure 2.4: Socket type rule example

sockets of the facing tiles must share the same socket type. Figure 2.4 shows
an example of the socket type rule being applied.

(a) Nonsymmetrical faces (b) Valid nonsymmetrical neighbor

Figure 2.5: Nonsymmetrical horizontal socket configuration

In addition, they must follow some extra rules based on the properties not
shared across horizontal and vertical faces:

• Horizontal faces: Must both have the property symmetrical selected,

12 Design

meaning that the orientation of the face isn’t considered or one be
marked as not-flipped and the other as flipped. As seen in figure 2.4a
both faces, left and right have the same socket type assigned, but they
are not symmetrical as seen in figure 2.3b, so a distinction is between
them is needed, that distinction is the flipped property. Figure 2.5 shows
a visual representation of this rule.

• Vertical faces: Must be both marked as rotationally invariant, mean-
ing that their rotation isn’t considered determining their connectivity or
share the same rotation index. Figure 2.6 shows a visual representation
of this rule when two sockets are not rotationally invariant.

(a) Valid neighbor (b) Invalid neighbor

Figure 2.6: Non-rotationally invariant vertical socket configuration

Face Name Symmetry Flipped
LEFT WALL LATERAL No Flipped

FRONT GRASS Yes -
RIGHT WALL LATERAL No Not Flipped
BACK SOLID Yes -

Table 2.1: Sockets example horizontal faces

Face Name Rotationally invariant Rotation index
UP WALL TOP No 0

2.4. Wave Function Collapse 3D parallelization 13

DOWN SOLID Yes -

Table 2.2: Sockets example vertical faces

Tables 2.1 and 2.2 show a possible configuration for the tile shown in Figure
2.3.

2.4 Wave Function Collapse 3D parallelization

The parallelization of the WFC 3D algorithm follows the same procedure as
its 2D version explained in section 2.2 but applied in a tridimensional grid
layer by layer. This method divides the desired map grid into horizontal
layers and applies the same logic as the 2D version of the algorithm layer by
layer. Starting from the bottom layer of the grid, it divides the layer into 4x4
chunks, leaving a gap of one tile between chunks, resetting each chunk’ area
and applying the WFC algorithm to those areas and repeating the process
3 more times with different offsets to cover the whole grid layer. Upon the
end of the process, incompatibilities are checked and in case of them, the
process is restarted for the current layer until no incompatibilities are found
and continuing to the next layer. Once all layers are completed, the whole
map is generated following all the adjacency rules established by the users via
the sockets.

Although it would be theoretically possible, to use 3D chunks and a 3D
division of the map with a 3D offset, this would always result in irresoluble
states due to the lack of lower layer foundations, in other words, the moment
a chunk in an upper layer collapses a cell into a tile that covers what it has
beneath it, all tiles from chunks under that would have to collapse into solid
(non-usable) tiles, but because they are being generated at the same time,
this update won’t arrive on time, therefore generating an irresoluble state.
There’s theoretically a chance that all chunks that generate a tile that needs
lower tiles to collapse on a solid tile concur with all lower chunks generating
solid tiles in the coordinates need, but it’s such a lower probability that is not
even considered.

2.5 Unity tool

2.5.1 Introduction

General description

This unity tool allows developers to generate procedural and customizable
worlds for their games. It uses the 3D Wave Function Collapse algorithm

14 Design

parallelized with the GPU, only requiring the user to design predetermined
tiles for their tilesets and configure their sockets to be able to generate a full
working world.

Objectives

The objective of this tool is to reduce the amount of work required to generate
worlds for a game. It eliminates the need of handcrafting each level, as the tool
is capable of generating completely new procedural worlds while maintaining
the same tileset given by the user.

Scope

The tool includes the options to set the size of the world both on the X, Y, and
Z axes, generate as many tiles and sockets as needed and create tile variations
automatically, all integrated within Unity’s editor UI.

Main audience

The main audience for this Unity tool are game developers that need a fast
and reliable way of generating worlds and artist that want to showcase their
modular assets.

2.5.2 System Requirements

Functional Requirements

• The tool must be able to generate a map of any given dimensions, using
any given tileset and following its tile’s socket configuration.

• The tool must be able to configure as many tiles and tilesets as the user
specifies.

• The tool must be able to manage as many socket types as the user
specifies.

Non-Functional Requirements

• The tool must be efficient to reduce performance impact in the editor.
• The tool must work with the latest versions of Unity.

Dependencies

• Unity 4.2 or higher.
• Compute shader compatible deployment platform.

2.5. Unity tool 15

2.5.3 System architecture

Architecture diagram

Figure 2.7 shows the architecture diagram used for the tool.

Design patterns

The tool architecture applies various software design patterns to ensure a
seamless integration with the Unity Engine. The Command Pattern is uti-
lized implicitly through Unity’s Undo and Redo system, allowing user actions,
such as object creation or parameter modification, to be tracked and reversed.
The two main UI scripts function as Facade components, abstracting com-
plex interactions between user input, asset generation, and scene manipulation
into a clean interface. Additionally, object and asset instantiation follows the
Factory Pattern, enabling the creation of game objects and assets based on
the parameters defined by the user.

2.5.4 User interface design

Prototypes

Figure 2.8 shows a mockup of the main windows of the Unity tool integrated
into Unity’s custom editor windows. They use all design and fonts provided
by Unity to maintain the visual aspect of the engine and fit in.

Navigation flow

The navigation flow in the tool will be separated into 2 main processes. First,
the user will need to create all the tiles needed for their project and set their
adjacency rules by adjusting the socket properties of each tile face. The left
window shown in Figure 2.8a will be used for this purpose, as it will allow
the user to set all the parameters explained in section 2.3 and create a tile
asset with the bottom button. In case, the user selects an already existing
tile asset, the window will show its data and the button will modify the asset
instead of creating a new one.

Once the user has finished crating the tile set, it will navigate to the second
window shown in figure 2, where the generation parameters will be set. Once
all parameters have been set, the bottom button will allow the user to create
a WFC Generator game object in the active scene. In case an already existing
WFC Generator game object is selected, the window will show its data and
the button will modify the existing game object instead of crating a new one.

16 Design

Figure 2.7: Architecture diagram

2.5. Unity tool 17

(a) Tile editor (b) WFC editor

Figure 2.8: Tool windows mockup

2.5.5 Test and validation

Test plan

The test for this tool will be done, testing it directly in a test scene. In this
scene, several tile sets will be defined, and maps of different dimensions will
be generated to test for failures.

Accepting criteria

For the tool to be accepted, all tests explained before must be passed. That
meaning that the tool must be capable of generating a map of any given size
with any given tileset and socket configuration.

18 Design

2.6 Videogame

2.6.1 Introduction

Title

System escape

Game concept

System escape is a 3D top-down adventure game based in a solar system
which star is near the end of its lifetime. As the star starts expanding before
its final collapse, all the astronauts in the planets leave their planets in a rush
for their lives, except for you. As a stranded astronaut you’ll have to find
your way out of the solar system before the supernova erases the system from
existence, gathering resources to build a spaceship and adventuring into the
other planets in the system, fighting enemies and collecting better materials
to upgrade your equipment until it’s powerful enough to bring you out of the
danger area.

Game’s objective

The main objective of the game is to showcase the power of the Unity tool
explained before as all the planets within the game will be procedurally gener-
ated with the tool, with different biomes, therefore different tilesets. In terms
of gaming experience, the game aims to present the player with a fast-paced
adventure centered in exploration and time and resource management.

Platforms

The only platform where the game will be available is PC.

Target audience

The target audience of System Escape are players that like both space explo-
ration and replayable experiences like Astroneer or The Outer Wilds.

2.6.2 Game mechanics

Player controls

• Player / Spaceship movement: WASD or Left Joystick.
• Accelerate / Decelerate spaceship: Shift / LeftCntrol or Right Trigger /

Left Trigger.
• Jump / Fly: SPACE or South Button.
• Collect / Attack / Interact: Left Click or West Button.
• Use gadget: Right Click or East Button.

2.6. Videogame 19

• Switch between gadgets: Q / E or Left Button / Right Button.
• Open mission pad: TAB or Select Button.
• Pause menu: ESCAPE or Options Button.
• Zoom in / Zoom out: Mouse Wheel or Dpad Up / Down.

Game rules

Wining condition

• Escape the solar system before the supernova occurs.

Losing conditions

• The supernova occurs while you’re in the solar system.
• The planet you are in is eaten by the star.
• Your life meter comes to 0.
• You run out of oxygen for more than 5 seconds.
• Your spaceship is totally destroyed.

Objectives

• Escape the solar system before the supernova.
• Upgrade your equipment to overcome each new planet’s challenge.
• Upgrade your spaceship to finally escape the planet.
• Gather resources to upgrade your equipment.
• Explore the planets to discover new materials.

Restrictions

• You can’t escape the solar system until your spaceship isn’t equipped
with the interstellar engine.

• You can’t enter a planet that has been eaten by the star.
• You can’t enter the star.
• You can’t get an upgrade on both your spaceship and equipment without

the right materials.
• You can’t get an upgrade on both your spaceship and equipment that

requires previous upgrades without unlocking them.
• You can’t gather materials that require an equipment upgrade to be

gathered without unlocking the upgrade.

Game systems

Health

• Your max health is 100 life points.

20 Design

• If your health reaches 0 you’ll die, losing the game.
• Your health will decrease after each hit received by an enemy.
• Your health will start recovering at a rate of 1 life point each 0.5 seconds.

Oxygen

• Your initial max oxygen level is 60L.
• Your oxygen level decreases at a rate of 0.5L per second.
• Your oxygen level will increase at a rate of 15L per second when you’re

near your spaceship or near space wrecks.
• Your max oxygen level can be increased with upgrades to your oxygen

tank.
• Planet conditions can alter the consumption rate of oxygen.

Combat

• Your player will aim automatically at the closest target when a weapon
gadget is equipped.

• Your attack range and damage will vary depending on the weapon gadget
equipped.

• Enemies will follow the player when entering their vision range.
• Enemies will attack the player when entering their attack range.
• Some enemies might have a nest that will keep spawning them at a

defined rate.
• Enemy nests can be destroyed by attacking them.
• Each enemy and nest will have a set amount of health that when reduced

to 0 will kill or destroy them.

The Table 2.3 describes all the enemies in the game:

Name Planet Description Stats Reference

Arrakworm Colis

A tiny worm that
moves under the
sand of the
dessert, it can
detect its preys
thanks to the
vibrations in the
sand. When
nearby a prey, it
jumps out of the
sand and attacks.

• Life points: 50
• Damage per

hit: 5
• Detection

range: 10m
• Attack range:

2m

2.6. Videogame 21

Rhinosite Colis

Medium size
armored bugs
that that live in
the dessert.
They’re not so
smart, they’ll
charge at
anything as soon
as they see it.

• Life points:
100

• Damage per
hit: 10

• Detection
range: 10m

• Attack range:
6m

Culex Phobos

Big flying bugs
similar to
mosquitoes that
shoot toxic liquid
and move in
flocks.

• Life points:
100

• Damage per
hit: 10

• Detection
range: 10m

• Attack range:
8m

Dionaea Phobos

Carnivore plant
that has various
mouths, generally
hunts Culex, but
it’ll attack
anything nearby
by launching one
of the mouths
and trying to bite
anything within
its attack range.

• Life points:
200

• Damage per
hit: 15

• Detection
range: 10m

• Attack range:
5m

Gaculex Regio

An evolution of
the Culex found
in Phobos.
Instead of
shooting liquid, it
fills and area
with toxic gas.
The gas damages
de player each
second.

• Life points:
200

• Damage per
hit: 20

• Detection
range: 10m

• Attack range:
4m

22 Design

Victorite Regio

An ancient bird
similar to a
dinosaur that
attacks its preys
by diving with its
claws on them.

• Life points:
300

• Damage per
hit: 20

• Detection
range: 10m

• Attack range:
5m

Edwatcher Platum

A biped monster,
similar to a
velociraptor that,
thanks to the
lack of
atmosphere of its
planet, has
mutated into a
silent assassin
that stalks its
victims while
being almost
invisible and then
stabs them with
its claws.

• Life points:
400

• Damage per
hit: 25

• Detection
range: 10m

• Attack range:
1m

Beltrax Platum

Similarly to the
Edwatcher, the
Beltrax species
are lone
predators that
attack their
victims, climbing
onto them.

• Life points:
400

• Damage per
hit: 20

• Detection
range: 10m

• Attack range:
1m

Table 2.3: Enemies

Equipment

• The player will start with basic equipment.
• The equipment can be upgraded at any moment with the necessary

materials.
• Equipment might have previous equipment unlocks needed for unlocking

them.

2.6. Videogame 23

• Equipment upgrades will increase the stats of the player like oxygen
capacity, attack resistance, movement speed and material capacity.

The diagram in Figure 2.9 shows the equipment upgrades tree with its
costs and dependencies:

Figure 2.9: Equipment upgrades tree

Spaceship

24 Design

• The spaceship is meant to be a transport medium to travel between
planets.

• The spaceship can be upgraded at any time with the necessary materials.
• Spaceship upgrades might need previous spaceship upgrades to be un-

locked before unlocking them.
• Spaceship upgrades will affect the spaceship stats like max velocity, ac-

celeration, deceleration, and the ability to land in new planets.

The diagram in Figure 2.10 shows the spaceship upgrades tree with its
costs and dependencies.

Figure 2.10: Spaceship upgrades tree

Gadgets

2.6. Videogame 25

• The player will start with 2 simple gadgets, a light sword and a gathering
tool.

• Gadgets can be upgraded and crafted at any moment with the necessary
materials.

• Gadgets upgrades and crafting might have previous gadgets unlocks
needed for unlocking them.

• Only one gadgets might be selected at a time.
• There might be some gadgets that once activated remain activated for

a period of time even when not equipped, like guardian drones.

The diagram in Figure 2.11 shows the gadgets upgrades tree with its costs
and dependencies:

Figure 2.11: Gadgets upgrades tree

26 Design

Materials

• Materials are distributed in each planet.
• Materials are categorized in different tiers.
• Each tier requires an upgrade for the player’s gathering tool.

The Table 2.4 describes all the materials in the game:

Name Tier Description Reference

Iron 1 Iron rock formations shaped like
cubes

Copper 1 Copper rock formations shaped like
stars

Magnetite 2 Solid rods that form clusters

Quartz 2 Pink crystals that form short sharp
layers

Phobosite 3 Spherical containers made out of
thick liquid merged with rocks

Radium 3 Glowing green rocks merged with
basic rocks

2.6. Videogame 27

Glaciate 4 Icicles full of gas bubbles that form
sharp clusters

Bismuth 4
Erratically shaped cubes that
merged one with each other
forming prisms

Platinum 5 Shiny metallic rocks formed in the
side of mountains

Petralact 5

Slimy transparent substance
formed after biological matter
suffers the effects of no atmosphere
for too long

Table 2.4: Materials

Solar system

• The solar system is composed by the main star and 5 planets.
• The star will grow, will destroy a planet every 20 minutes.
• Planets are orbiting around the star at a constant speed.
• Planets are distributed in equidistant circular orbits around the central

star.
• Planet destruction order is determined by the closeness to the star,

meaning that the closest planets will be destroyed first and further ones
last.

• Each planet contains new materials and materials from planets closer to
the star.

• Each planet has its own set of enemies and biome conditions that might
affect the player’s stats differently.

The composition of the solar system will be specified in the section 2.6.4.

Progression

28 Design

• The player will start its journey in the closest planet to the star, acting
as a tutorial.

• The player will have to learn to gather materials and fight basic enemies
to fix the spaceship before leaving the first planet.

• Once exited the first planet, the player will have to go through every
single planet, gathering new resources and unlocking new upgrades and
gadgets to face the new challenges and unlocking every spaceship up-
grade until reaching crafting the interstellar engine and leaving the solar
system.

Physics and game logic

• Game objects will work using rigid body physics.
• Planets will have a set size, measured in tiles generated by the unity

tool, explained before.
• Planets will be divided in memory persistent chunks, loading only the

ones near the player.
• Planets are procedurally generated each time the player enters them for

the first time.
• The solar system will have world bounds that will prevent the player

from going too far into space without the interstellar engine, in case the
player has unlocked it, the game will end, and a victory screen will be
shown with a summary of the things done by the player.

2.6.3 Story and narrative

General synopsis

As part of the Interstellar Space Exploration Agency (ISEA), you and your
comrades of the James Web 3 mission are adventuring into an unexplored
solar system to study the effects of a dying star in its neighbor planets. Ac-
cording to the information that you were given by the ISEA, the mission was
completely safe, but suddenly a new emergency announcement arrives to your
team. “CAUTION: The Star Supernova is imminent, leave the system at all
cost. ESTIMATED REMAINING TIME: 0’ 100” 00”’ ”. As the messages
arrives, your team starts panicking and leaves the planet, without noticing
that you were left. Now, alone and stranded, you’ll have to find your way out
of the system.

Main character

• Name: Clark Jackson
• Description: Clark Jackson is a 35 years old man, 1.80 meters tall that

served to the US Navy in his 20s to finally afford college and becoming an

2.6. Videogame 29

aerospace engineer for the ISA. He’s a passionate for space exploration
and a talented engineer, part of the James Web 3 mission.

• Motivations: Clark Jackson’s main motivation is to undercover the
secrets from space to contribute to society once he comes back from
the mission. He has a special interest in the development of new green
energy technologies, and believes that a Dyson Sphere might be the
ultima energy source for humanity.

Story and world background

The game takes place in the year 2050, when humanity has recently discov-
ered the interstellar engine. This invention allows the spaceship to travel
between solar systems. With the barriers of space travel distance broken, a
new aerospace agency was created, the Interstellar Space Exploration Agency
(ISEA) with the main objective of researching new solar systems. One of the
missions directed by the ISEA is the James Web 3, a mission to study the
effects of a dying star on its system’s planets. Our main character, Clark
Jackson, is selected as part of the crew for this mission. Once all members
were prepared, they were deployed in the closest planet “Mercum”, the closest
to the star “Andromedae”. The mission was supposed to be completely safe
as the star’s life span was still somewhat for from its end, but there was a
miscalculation and the crew had to abandon the system as soon as possible.
Unfortunately, Clark Jackson was left behind in the escape, so now he’ll have
to find its way out alone before the final supernova.

Missions and story progression

In terms of story progression and missions, the game features a single mission,
escape the “Andromedae system” before the star dies and erases the system
from existence. You’ll have to keep moving from planet to planet, adapting to
the environment, so the story progression is tied to the choices made by the
player.

2.6.4 Level design

Andromedae system map

The game takes place in the “Andromedae system”. The system is composed
by 5 different planets that orbit around the main star in equidistant circu-
lar orbits at a constant speed. The star will grow at a continuous speed,
destroying near planets each 20 minutes.

Planets

The following table 2.5 the characteristics of each of the planets (for a more
detailed explanation of enemies and materials, see section 2.6.2 and 2.6.2):

30 Design

Figure 2.12: Andromedae system map

Name Description Size Difficulty

Mercum

Initial planet that serves as a
tutorial for the player. Mainly
composed by water and earth-like
terrain with a clear atmosphere
that doesn’t affect oxygen
consumption. Tier 1 materials can
be found with no enemies in sight

Small Easy

Colis

Pinkish desertic planet that is
mainly made out of sand and rocky
terrain with a sandy atmosphere.
Tiers 1 and 2 materials can be
found here, accompanied by
terrestrial enemies

Medium Easy

Phobos

Corrosive planet that is mainly
made out of rocky terrain and toxic
water. Its corrosive atmosphere
doubles the oxygen consumption of
the player, and toxic water
damages the player when in
contact. Tiers 1, 2 and 3 materials
can be found here, accompanied by
both terrestrial and flying enemies

Medium Medium

2.6. Videogame 31

Regio

Gaseous planet that is mainly
made out of islands separated by
the thick gas of the atmosphere.
The atmosphere makes is difficult
to see the surroundings. Falling
into a pit results in the death of
the player. Tiers 1, 2, 3 and 4
materials can be found here,
accompanied by flying enemies

Large Medium-high

Platum

Moon-like planet that is mainly
made out of mountains. The lack
of an atmosphere has made the
enemies of this planet evolve into
more dangerous versions. Tiers 1,
2, 3, 4 and 5 can be found here
accompanied by terrestrial and
flying enemies

Large High

Table 2.5: Planets

Difficulty curve

Each planet presents the player with new movement challenges and new en-
emies that gradually require the player to get better upgrades and use new
equipment. This results in a constant rise of difficulty through the planets,
with the addition of the planet destruction that ultimately forces the player
to travel to newer and more difficult planets.

2.6.5 Art and visual style

Art direction

System escape’s art direction falls directly into the 3D low poly category,
with a zoomable 3:4 view controlled by the player. It’s main visual reference
is the game “Astroneer” developed by System Era Softworks, released in 2016.
Figure 2.13 shows a set of in game captures that show the color full, low poly
art of “Astroneer” that inspires the whole art style of this game.

Character and enemy design

The main character design is mainly based on a space suit, all his body is
covered by it, even his face is not visible due to the anti - UV ray visor. The
suit is mainly made out of white fabric. Figure 2.14 shows a character from
“Astroneer” as a reference.

32 Design

(a) Atrox from “Astroneer” (b) Desolo from “Astroneer”

(c) Novus from “Astroneer” (d) Sylva from “Astroneer”

Figure 2.13: Art references from “Astroneer”

Figure 2.14: Design reference for Clark Jackson from “Astroneer”

2.6. Videogame 33

Enemy designs are detailed in the enemy table at section 2.6.2.

Environment and scenarios

Figure 2.15: Generic world chunk generated by the Unity Tool

As explained in section 2.6.4 System Escape’s world is divided into 5 dif-
ferent planets, each of them with a different set of tiles and color palette. The
main color of each planet’s palette can be seen in the “Andromedae system”
map shown in figure 2.12 and a more in depth explanation of the orography
of each planet can be found in section 2.6.4. As a secondary effect caused by
the use of the wave function collapse algorithm in the Unity tool explained
at the beginning of this document, all planets are structured in chunks made
out of cubic tiles. Figure 2.15 shows an example of a generic chunk generated
by the tool that resembles how the planet’s structure will be. Keep in mind
that the tile set will fit both the color palette and description explained in the
section mentioned before.

UI and UX

Figure 2.16: Mission pad from “Astroneer”

All UI and UX in System scape will be integrated within a pad that the
character will have hanging from his belt. In order to access the inventory,

34 Design

check health and oxygen levels, manage upgrades or even enter the pause
menu, the player will have to stop and open take out this device. This means
that the UI is fully integrated into the game world, being diegetic. Figure 2.16
shows the reference pad from "Astroneer".

To provide the players with a better game experience, sounds will be re-
produced to indicate important information, such as low oxygen levels or low
health levels, and changing the gadget in use won’t require the use of the pad.

2.6.6 Sound and music

Soundtrack style

System Escape’s soundtrack style is based on the “Astroneer” and “Minecraft”
soundtracks, both featuring “Ambient music” that brings a feeling of joy and
exploration but with a deep familiar and cozy touch. In System Escape’s
soundtrack, the sound design aims to achieve this exploration feeling but
changes the familiarity and coziness for an insecure and tense background.
To do this, the soundtrack will be purely instrumental, faster and more in-
tense than the referenced games, a closer approximation is the song “Pig Step”
added in the latest “Nether Update” for “Minecraft”.

Key sound effects

Some sounds are needed for the basic functioning of the game:

• UI click sound
• UI change selection sound
• Damage taken sound
• Sword swing sound
• Gun burst shot sound
• Enemy attack sound (one for each enemy)
• Low health sound
• Low oxygen sound
• Planet eaten by the star alert sound
• Spaceship engine sound
• Enemy death sound
• Material collected sound
• Gathering sound
• Death sound
• Oxygen refill sound

2.6. Videogame 35

2.6.7 User interface

Main and in-game menus

The game features a single non-in-game menu, the main menu, where the
player will have the option of starting a new run, changing the sound and
graphical settings of the game and exiting the game. This menu will be com-
posed by the title of the game at the top left side, all menu buttons under the
title and a real-time render of the “Andromedae system” as the background.
New submenus as the settings menu will appear on the right side of the screen
once activated. For the in-game menus, the player will have 5 menus incorpo-
rated into the characters pad as explained in section 2.6.5. One of the menus
will show the general state of the player and its inventory. Another 3 will show
the progression trees for the Equipment, Spaceship and Gadgets upgrades as
shown in sections 2.6.2, 2.6.2 and 2.6.2. Finally, the last menu will show the
pause menu with the options to resume, quit and return to the main menu.

Indicators

As explained in the section 2.6.7, the character general state menu will also
display 2 bars, one for the current health of the player and another one for
the current oxygen level of the player.

Accesibility options

All menus in the game will be interactive with the mouse and game pad,
navigating between all the available buttons by hovering over them with the
mouse or navigation between them with the D-pad of any game pad.

2.6.8 Technical aspects

Game engine

The game will be fully developed in Unity 6.

Programming languages

C# will be the main programming language used for the game scripts, along
with HLSL for shader creation.

IA and NPC behavior

As the game only features enemy NPCs, the AI used for them will be a basic
enemy behavior system with a navigation mesh. Enemies will follow the player
if it enters their vision range, until reaching their attack range, they’ll attack
in the direction of the player.

C
h

a
p

t
e

r

3
Tool development

Índice
3.1 WFC compute shader adaptation 37
3.2 Shader management in the CPU side 40
3.3 Chunks generation mode 43
3.4 User interface . 45
3.5 Tool results . 49

This chapter shows an in-depth explanation of the development and im-
plementation of the tool in Unity, including the whole process and decisions
made along the way. It also explains the modifications made to it to better
fit the tool’s purpose, along with the results obtained after finishing both the
development and implementation.

3.1 WFC compute shader adaptation

One of the main advantages of GPU computation lies in its capability to
execute a massive number of threads in parallel, making it particularly well-
suited for algorithms that can be decomposed into independent tasks. For
this reason, the WFC algorithm, specifically, its 3D parallelized version as
explained in Section 2.3 has been adapted to run on the GPU using a compute
shader written in HLSL.

Compute shaders operate in a specialized programmable shader stage de-
signed for general purpose computations. Unlike traditional shaders, they

37

38 Tool development

are not part of the graphics rendering pipeline and must be explicitly dis-
patched. When dispatching a compute shader, the number of thread groups
to be launched needs to be specified, and each thread group runs a fixed num-
ber of threads, defined by the [numthreads(x, y, z)] directive in the HLSL
code. In this implementation, as explained in Section 2.4, each layer of the
map is generated in parallel by dividing it into smaller chunks, each of which
is handled by a separate thread group.

Due to the limitations of GPUs, the limited number of temporal registers
available per thread group, this implementation restricts each group to 2x2
threads. This is a trade-off to maintain high performance, as exceeding the
register budget per group can lead to register spilling and a significant drop
in performance.

Each thread in a compute shader is uniquely identified by a 3D coordinate
known as the DispatchThreadID, which is automatically assigned by the GPU
at dispatch time. This ID combines the thread’s position within its group and
the group’s position within the global grid of thread groups. Specifically, the
global ID is computed as:

DispatchThreadID = GroupID × NumThreads + GroupThreadID (3.1)

Where GroupID is the index of the thread group, NumThreads is the number
of threads per group in each dimension, and GroupThreadID is the thread’s
local index within its group. This system allows each thread to independently
compute and operate on a unique region of the data. In this WFC adaptation,
the shader is designed to process a 4x4 region of the map, with the origin of
each region determined by its corresponding DispatchThreadID and an addi-
tional offset that controls the offsets needed to leave a gap of one cell between
chunks while also displacing the generation to cover all the layer as explained
in section 2.2.

That data is accessed via a structured buffer that stores the map in the
form of a cell struct array, each cell struct containing the information of its
state, collapsed or not, its entropy and an array of its possible tiles. Unlike
C# classes, structs can’t contain other structs as properties, so the possible
tiles saved as indexes of another structured buffer that contains an array of tile
structs, each of them containing the parameters of each tile in the tileset, these
parameters being the arrays of compatible neighbor tile for each of the tile’s
faces, this ones being also saved as indexes of this same buffer. In addition
to these two buffers, a third one is used to track any error occurred in any
thread of the dispatch.

3.1. WFC compute shader adaptation 39

Once the initial index of the map area covered by the thread is calculated,
the shader calculates the indexes of the rest of the cells in the area to ease
later access to them. Then, all that cells are reset to their default values to
eliminate the effects of previous dispatches, preparing the area for the WFC
generation. From that point, for each cell in the area covered by that execution
of the shader, the neighbors of each cell are updated based on their adjacent
cells and its possible tiles, saving the index of the cell with less entropy at
the end of the update. This index is used to access the cell that will be
collapsed, meaning that a random tile from its possible tiles is selected as the
final tile. This loop is repeated until all cells in the area are collapsed, or an
incompatibility is encountered. Figure 3.1 shows a diagram representing the
shader processes.

Figure 3.1: WFC compute shader diagram

The specific implementation of the neighbor check and tile collapse are
broke down as follows:

• Check Neighbors: This operation is done once for each of the cells
every time a cell is collapse and at the start. The way it is done is by
going through all cells in the area and for each of them check if their
array of possible tiles is still valid. To do that, it is checked tile by tile
in the array of possible options if that tile appears at least in one of the
list of neighbors in the corresponding direction of any of the possible
tiles in the neighbor cells. With that checked, a new array is built with
only the new possible tile for the cell we are checking.

• Collapse cell: This operation is done after all neighbors are checked
for all cells in the area. The cell with entropy (less possible tile options)

40 Tool development

is chosen to be collapse. Collapsing is choosing a random tile from
its possible tiles array, this is done using the seed given by the CPU
modifying it based on the index of the cell we are collapsing and then
obtain the modulus of the that seed and the number of possible tiles for
the cell we are collapsing, which gives us an index that will be the chosen
tile. If the array is empty, that means we’ve reached an incompatibility,
this will update the state buffer to indicate it.

3.2 Shader management in the CPU side
As explained above, the compute shader is in charge of the WFC logic, but it
needs a method to prepare the data before loading it into the GPU buffers,
manage the dispatches and retrieve the data from the buffers once the dis-
patches are done. This is done by a C# script that runs in the editor when
the tool needs to be used. The script is divided into three phases, data prepa-
ration, shader dispatching and data retrieval.

3.2.1 Data preparation phase

Figure 3.2: Data preparation phase diagram

The data preparation phase is in charge of making the data arrangements
necessary for it to be used in the shader, as it needs all neighbors to be pre-
calculated for every face of every tile. Before calculating the neighbors, the
tool integrates a method that allows the automatic generation of tile varia-
tions, meaning that all versions of tiles containing symmetries are generated
automatically, freeing the end-user from the burden of creating variations for
each tile by hand.

3.2. Shader management in the CPU side 41

For example, if the user defines a wall tile, all 3 variations of this tile will be
calculated by creating a copy of the original tile, rotating the mesh inside the
game object 90º, 180º and 270º respectively and also switching the adjacency
rules of each face of the cell to match the new rotation. Figure 3.3 shows this
example visually.

(a) Original tile (b) Tile variations

Figure 3.3: Automatic tile variation generation

After the tile variation generation is done, the process of defining neighbors
begins. It uses the sockets and their parameters explained in section 2.3 to
achieve this goal. It goes thought all the tiles in the tileset and for each of them,
it checks one by one all the other tiles in the tileset, comparing each face’s
socket with its counterpart, the top face of the cell being checked against the
bottom face of the cell being checked with, right face with left face, front with
back, etc. In addition to the socket rules, a new parameter has been added
to allow the user to define exception rules. These rules prevent neighboring of
tiles that would be compatible by the socket rules, but the user doesn’t want
them to occur. To do so, the user can add a type to each tile and exclude any
tile type on any face of a tile, preventing compatibility on that tile face for
those specific types.

Once all neighbors are precalculated for each tile face, the 3D grid of the
map is fully generated based on the dimensions specified by the user and filled
with uncollapsed cells that have all tiles in the tileset as a possibility. This
cells and tiles are stored as instances of the Cell() and Tile() classes, which is
convenient when working within the CPU, but as explained in section 3.1, the
compute shader used for the WFC generation can’t handle C# classes and
uses structs instead. This requires an extra process in the data preparation
phase, the generation of structs based on the corresponding class instances
previously used in the preparation phase. It consists of cloning the grid and
tiles in the tileset into arrays of cell and tile structs respectively with the same
data so it can be pushed into the buffers declared for the shader.

Finally, all tilesets have two mandatory tiles added by the tool, the solid
and empty tiles, these tiles are used to fill the air parts of the map and the

42 Tool development

map parts beneath the surface. To ensure the upper and lower limits of the
map are properly filled and don’t have voids, the upper and lower layers of
the map are collapsed into empty and solid tiles before sending the data to
the buffers.

This buffers, along with another uniforms needed by the shader such as the
X, Y and Z dimensions of the grid, the offset vector and the seed are loaded
into the GPU before dispatching the shader. The seed is used for the random
tile collapse as the GPU can’t natively generate random numbers, so a seed is
needed that is modified by the DispatchThreadID and the cell to be collapsed
index. Figure 3.2 shows a visual diagram of this phase.

3.2.2 Dispatch control phase

Figure 3.4: Dispatch control phase diagram

The dispatch control phase is in charge of performing the necessary dis-
patches needed to generate a map based on the dimensions, tiles and tileset
specifies by the user. This phase follows what was explained in section 2.4,
dividing the map into one tile thick layers and handling the dispatches needed
to generate each layer. As explained in section 2.2 for each layer, four dis-
patches of the shader are done, each of them with a randomly generated seed
and a new offset. These offsets are (0, layer, 0), (2, layer, 0), (0, layer, 2)
and (2, layer, 2) to properly cover for all tiles in the layer and ensure proper
propagation of the changes across the layer. After the dispatches, the state
buffer data is retrieved and check, this data represents the amount of incom-
patibilities found during the dispatch on all threads, if different from zero,
something failed and the layer is redispatched until zero incompatibilities are
found. Once the final layer reaches this zero incompatibilities state, the dis-
patch control phase finishes, as a proper map has been generated. Figure 3.4
shows a visual diagram of this phase.

3.3. Chunks generation mode 43

3.2.3 Data retrieval phase

The data retrieval phase is the last phase needed for completing the map
generation. At this the whole grid of the map is fully collapsed with no
errors, so the original cell structs are replaced by the data retrieved from the
shader buffer and the necessary tile game objects are instantiated into the
scene as children of the original grid cells. Finally, the hierarchy is modified,
eliminating all cell parent objects, empty tile and solid objects, leaving a clean
hierarchy that the user can understand and manipulate if needed. The way
this phase works is just a loop that instantiates the correct tile on each cell
based on the struct information. Figure 3.5 shows the complete diagram of
the tool parallel mode.

Figure 3.5: Complete parallel mode diagram

3.3 Chunks generation mode

The original idea of this project was to only implement the parallel approach
as it seemed to be the perfect solution for the problem, but after weeks of
tweaking the shader and trying new options, a problem that couldn’t be solved
was found with that approach. Parallel generation works really fast until a
certain threshold is met, 16 by 16 is the last map size where the generation
times are reasonable. This is because as the map size increases, the odds of

44 Tool development

finding incompatibilities increase and for each incompatibility the tool needs
to restart the process.

As this threshold seemed too low, an alternative chunk generation mode
was created. For this mode, a separate C# script is used along with a modified
version of the compute shader to accommodate the needs of this new approach.

This approach is similar to the parallel version but adds a few steps to the
algorithm:

• Chunk subdivision: The first step in this mode is to divide the orig-
inal grid into 4x4x4 cubic chunks and based on the number of chunks,
generate as many offset coordinates as needed, this coordinates indicate
the position of the bottom left cell of the area that will be obtained as
a sub-grid.

• Subgrid copy: For each of the offsets obtained in the last step, an
area of 3x3x1 chunks is copied to a smaller grid, and an equal subgrid is
created to save the indices of the original grid that corresponds to the
ones in the subgrid. This is done to always load the same amount of
data to the GPU buffer, as in the parallel approach, the whole grid had
to be loaded into the buffer.

• Dispatch layer by layer on the center chunk of the subgrid:
Now that the subgrid loaded in the buffer, a single dispatch per layer is
done with a group size of 1x1x1, and a thread count of one. This elimi-
nates parallelization, but eliminates the problem of concurrent memory
accesses to cells surrounding the area. Being able to update that area,
reduces the amount of incompatibilities to almost none, so the profit
obtained is larger than the performance sacrifice.

• Shader working area update: As a modification of the shader, it is
now needed to update an area one tile bigger than the area that is going
to be modified, meaning that a loop of update neighbors is run once for
the whole working area and then the generation starts in the smaller area
corresponding to the chunk, this is the reason why the subgrid obtained
before is bigger than the chunk generated, because the algorithm needs
the information about the cells surrounding the area that is going to be
generated to prevent incompatibilities.

• Backtracking: When the information is received back in the CPU, a
counter has been added to control the attempts for each chunk, if it
exceeds a limit of 100 attempts, the last chunk is regenerated, trying to
find a new solution that might fit better the next chunk.

3.4. User interface 45

In addition to these changes, the function in charge of cleaning the hier-
archy has been modified to group all cells in chunks and assign coordinates
to the names of these chunks to present the results of the generation to the
end-user in a clean form.

This approach is capable of generating a map that greatly surpasses the
limitations of the parallel approach at the cost of performance, but with a
linear increase in time consumption instead of exponential time consumption
as the parallel approach had. This approach is not perfect either as even with
the backtracking implemented it might end up finding an incompatibility due
to not updating the whole map after each cell collapse, but gives satisfactory
results almost every time if the tile set is properly configured. Figure 3.6
shows a complete chunk mode diagram.

Figure 3.6: Complete chunk mode diagram

3.4 User interface
As a tool, the user needs an interactive interface that abstracts all the logic
explained above and gives the user the ability to use the tool easily. For that
reason, two different interfaces have been created, one for managing different

46 Tool development

tileset and tiles and another one to control the actual generation using those
tileset.

The class Tileset() has been created as a scriptable object to be able to
store the data of each tileset, that data being the tiles contained in that tileset,
the socket types created for that tileset, the tile types created for that tileset
and the size of the tiles contained in the tile set.

3.4.1 Tilset editor UI

Figure 3.7: Final tileset editor UI

Figure 3.7 shows the final result of the interface created for the tool. This
interface has been created using Unity’s UI Toolkit and is paired with a C#
script that allows the use and creation of the tool’s interface as a window of
Unity and manages the different aspects of the tool.

• The tool automatically reads the data in the Asset’s folder of the user
looking for the directories that it has established and if it doesn’t find
them it automatically creates them.

3.4. User interface 47

• The tool lets the user load an existing tileset or create a new one with
the dropdown at the top of the window and allows the modification of
the tileset name and tile size at any moment given.

• The tool loads automatically all the tiles of a tileset, allowing the user
to switch between the existing ones o create a new one.

• When a tile is selected, the user can rotate the 3D model of the tile, zoom
in and out and see an indicator that tells the user which face correspond
to which socket. This was done by instantiating an object in the scene,
adding a camera and rendering the view of that camera into the editor,
the same method as unity uses (both camera and object can’t be seen
by the user).

• The user can change the name of the tile, the type of the tile, its prob-
ability and the prefab attached to that tile, the variations wanted and
the transform override in case his models are not centered properly.

• The selection of excluded types for each socket has been converted into
a procedural set of checkmarks to make sure the user always enters
information of existing types and gives a more intuitive interaction.

• Sockets now have two sections where the user can create as many socket
types as he wants with just a text field and a button and eliminate any of
the existing at any moment. If there are any sockets using an eliminated
socket type, the script goes through all the tiles, fixing it.

• All sockets are now as simple to configure as clicking the interface a few
times to change all the parameters needed.

Finally, all work done in this window is saved as the user presses the save
button at the bottom of the window to make sure that the user is sure about
the changes he has done. Once saving is occurring, the script automatically
renames the objects, modifies the data directories if needed and moves the
objects to their corresponding new folder to keep the project of the user orga-
nized.

3.4.2 Map generation UI

Figure 3.8 shows the interface of the map generation window of the tool,
this interface is simpler than the tileset editor one because once the user has
prepared the tileset, generating the map only requires the tileset he wants to
use, the object he wants the map to be child of and the generation mode that
he will be using.

48 Tool development

(a) Parallel mode

(b) Chunk mode

(c) Interface while generating

Figure 3.8: Map generation UI

This interface was created using the same methods as in section 3.4.1,
using Unity’s UI Toolkit and attaching a C# Script to it, that manages the
scripts needed for the generation.

• The user can change the tileset used for the generation at any moment,
except while generating a map.

• The user can select the parent object of the map or generate a new one,
if the tool detects that the selected one contains a map it will reset that
map.

• The user can select the chunk generation or the parallel generation,
depending on which one is more convenient for his purpose.

• The user can select any map size, the tool makes sure the parameters
entered are valid and limits the input with slider if parallel mode is
selected.

• Once generation of the map has started, the user is given an alert that
generation might get stuck, so a progress bar and a stop button are
shown to him in case he needs them.

3.5. Tool results 49

Based on the parameters set by the user, the tool calls the parallel or chunk
version of the algorithm and gives them the parameters needed to output a
result based on the user input.

3.5 Tool results

(a) Mercum tileset (b) Colis tileset

(c) Phobos tileset (d) Regio tileset

(e) Platum tileset

Figure 3.9: Tool results obtained for the System Scape game

Map Size CPU version Parallel mode Chunk mode
16x3x16 14s 0.8s 3s
32x3x32 140s - 6s
64x3x64 1400s - 12s

Table 3.1: Time improvements over CPU implementation

The tool has achieved the expected results marked at the start of this
project, it’s a great alternative to other procedural generation approaches and

50 Tool development

greatly simplifies the use of the Wave Function Collapse algorithm to the end-
users, allowing them to create maps with complete freedom on how they look.
The interface is intuitive and filled with tooltips to help the user navigate
through its options.

Even though the tool results are good and according to what we expected
from it, several problems were encountered along the way, being the main one
that the compilation times of the shader are too long, limiting the maximum
amount of tiles to 50 including its variations, it is still a wide range, but
it’s a limit after all. Figure 3.9 show the worlds created for the game System
Scape, also part of this project, each scenery has a unique tileset with different
tiles and a different map size, proving the tool capable of generating any size
environments with any tileset given by the user while giving great results. On
the other hand, table 3.1 shows a great improvement over the CPU version of
the tool, proving that taking workload to the GPU is effective.

C
h

a
p

t
e

r

4
Game development

Índice
4.1 Player movement . 51
4.2 Resource gathering . 53
4.3 Combat . 54
4.4 Upgrade system . 55
4.5 Spaceship movement . 56
4.6 Game loop . 57
4.7 Interface . 57
4.8 Sound system . 58
4.9 2D art . 59
4.10 3D art . 60
4.11 Results . 62

This chapter shows the development and implementation of the video game
System Scape, which serves as a demonstration of the tool capabilities.

4.1 Player movement

4.1.1 Input gathering

As the game is meant to be played with controller or keyboard and mouse,
the newest Unity input system has been used to map then input of the player
in the most generic way. This system allows the use of any type of controller
without the need of having a specific input mapping for each controller type.

51

52 Game development

Figure 4.1: Controls of the game shown in the UI

These inputs have their different event calls attached to the player con-
troller class, which is in charge of managing these inputs and translate them
into actions based on the state of the input at that moment. Figure 4.1 shows
the final controls panel inside the game’s UI, showing the mapping of both
game pad and keyboard and mouse actions.

4.1.2 Player

Figure 4.2: Player using the jetpack

The player controller script translates the vector obtained from the left axis
stick or WASD and sets the speed of the player to the result of that direction

4.2. Resource gathering 53

multiplied by the player speed, avoiding accelerations, decelerations and al-
lowing proper air control without inertia. This approach is rather non-realistic
but gives the player a more comfortable control over the player movement.

Where inertia is applied is in the jump and jetpack implementations, when
the input attached to these actions is first pressed, an impulse force is applied
upwards to the player, leaving him in a free fall state once the inertia of this
force is gone. Then, if the player has the jetpack upgrade and pressed the
button again, a continuous upwards force will be applied to the player until
the player stops holding the button down or runs out of fuel for the jetpack.
Figure 4.2 shows a capture of the player using the jetpack.

Apart from that, collisions are handled in a classic way, using Unity’s rigid
body physics.

4.1.3 Camera

As before, the player controller script translated the vector obtained from the
right axis stick or mouse delta and sends it to the camera controller script,
which rotate the camera accordingly while maintaining the player in sight.
To do this, the camera controller uses a ray cast to avoid collisions of the
camera with other objects in the scene and the actions to zoom in and out
have been mapped to the d-pad and mouse wheel, which both modify the
effective distance of the ray cast. Figure 4.3 shows the camera set in different
angles and with different zoom configurations to show the results of the custom
camera controller.

(a) Zoomed out (b) Zoomed in

Figure 4.3: Camera controller examples

4.2 Resource gathering
The resource system has been implemented by creating a set of prefabs, each
representing a type of resource that can be obtained by the player. These
resources require the player to have certain upgrades to be able to obtain and
require a certain amount of time for gathering them.

54 Game development

(a) Material gathering (b) In-game Materials

Figure 4.4: Gathering system example

Once the player is in range of gathering a material, if he holds down the
interaction button, a countdown will start in the material that will change
the visual state of it until breaking it down, once it’s completely gathered,
it’s added to the players inventory and if the player stops interacting mid-
way through the gathering process, the material returns to its original state,
resembling the block behavior of "Minecraft".

Additionally, the way the gathering range is managed is by using a sphere
trigger with a radius equivalent to the gathering range of the player that
detects when a material enters or leaves the range. Once they enter or leave
the range, materials are added or removed from the list of available materials
in the GameManager() singleton class, which controls almost every aspect
of the game that needs to be shared across game objects. When gathering
materials, the closest one to the player from the ones in range is chosen.
In addition, when gathering a material, a line renderer is used for aesthetic
purposes and to indicate which material is being gathered. Figure 4.4 shows
the player gathering a material in the planet Regio and all materials in the
game.

4.3 Combat
The combat system implements two weapons, a sword and a rifle, these work
in the same way, a sphere trigger is used to detect enemies that enter the area
of the rifle, as it is the weapon with larger range. Once the player decides
to attack, all enemies are ordered by distance to the player and the closer
one is selected as the target. in case of using the rifle, a burst shot is made,
meaning that the enemies will receive the damage amount of the rifle three
times with an interval of 0.1 seconds, resembling as it was shot three times.
In case the player is using the sword, an additional check is done to make
sure that the closest enemy to the player is within the sword range and then
damage is applied to the enemy. Figure 4.5 shows the player equipped with

4.4. Upgrade system 55

(a) Rifle attack (b) Sword attack

Figure 4.5: Combat system weapon showcase

different weapons and performing the attack animations.

Even though the implementation is rather simple, this methods in addi-
tion with different animation set for each weapon, attack and hit animations,
automatic rotation of the player’s model towards the target and sound effects
makes the combat feel alright. Originally, the game had 10 enemies planned
but, due to the addition of the chunk mode to the Unity tool also made in this
project, the time for making the game had to be reduced. This reduction of
time has forced the elimination of almost all enemies from the game, except
from one simple enemy. The game is still enjoyable as the enemies were just
an obstacle to make the task of escaping the planet more challenging, but are
not necessary for the game to still be an enjoyable and complete experience.
This enemy consists of a static structure that absorbs health from the player
when he gets in its range.

4.4 Upgrade system
The upgrade system works by having a scriptable object that stores the type
of upgrade as a type of an enum, if it has been obtained or not, its costs in
materials and a list containing the previous upgrades that need to be unlocked
before obtaining it. There’s an instance of this scriptable object saved in the
project files for each of the upgrades existing in the game and detailed in
figures 2.9, 2.10 and 2.11 with their corresponding dependencies and costs.
Figure 4.6 shows the in-game interface used for obtaining the upgrades.

The way upgrade unlocking is managed:

• When an upgrade is obtained, the upgrade object is passed to the Game-
Manager() singleton so it can handle its unlock.

• First, the system checks if all previous upgrades required for the new
one are obtained.

56 Game development

Figure 4.6: Upgrade UI panel used in the game

• Then it checks if the player has enough resources to get the upgrade.

• Finally, if all the criteria has been met, the system applies the upgrade,
modifying the corresponding variables with the corresponding data de-
pending on the upgrade type specified in the upgrade.

4.5 Spaceship movement

(a) Spaceship acceleration (b) Spaceship deceleration

Figure 4.7: Spaceship accelerating and decelerating

The movement of the spaceship is implemented similarly to tank controls.
The input is taken using the same method explained in section 4.1, this time,
the left stick axis horizontal input and A/D are taken to rotate the spaceship
on its Y axis while the right and left trigger axis as well as shift and control
keys are used to accelerate and decelerate the spaceship respectively. This
acceleration is constant, and no friction is applied, this is done to better
represent the movement in space. To help the player navigate through space,

4.6. Game loop 57

the spaceship movement system is tied to the X and Z axis, avoiding vertical
movement as it isn’t needed in the game and would only interfere with the
objective of moving between planets. In addition, particle systems have been
placed on the spaceship engines to indicate when the spaceship is accelerating
or not, as it can be difficult if no celestial bodies appear on camera. Figure
4.7 shows the spaceship movement, accelerating and decelerating in space.

4.6 Game loop

The main game loop is managed by the singleton class GameManager(), it
updates the rotation of all planets even while the player isn’t watching them
and also the scale of the main star in the game, as if this star gets big enough
to overlap with the player or the planet where the player has landed it results
in the death of the main character and a game over state. All the start in
the game orbit at equidistant circular orbits around the main star, so the star
scale increases linearly at a rate calculated, giving the player an 20-minute
time span between the destruction of each planet.

This class also manages, the oxygen consumption and regeneration corou-
tines, the health regeneration coroutines, combat, scene loading and game
resets. These implementations are rather simple as they only update values if
certain criteria is met or overtime, the design of these systems can be found in
sections 4.3 for combat, 2.6.2 for the oxygen system and 2.6.2 for the health
system.

4.7 Interface

Figure 4.8: Options tablet screen

58 Game development

The main interface of the game is the tablet carried by the main character,
in this screen, the user can buy all the upgrades needed, check its inventory
and access the pause and main menus. This interface is controlled by the sin-
gleton class HUDManager() in charge of keeping the interface updated with
the actions of the player and loading or unloading the different elements nec-
essary to navigate the game menus.

Figure 4.9: Game world HUD

Each time, the player accesses the games interface, the tablet flies in front
of the screen to make it look like the player is actually using the screen.
This interface is implemented thought a screen space camera canvas to allow
the use of camera effects on the tablet screen rendering, this will have an in
depth explanation in section 4.9. It can be navigated by both clicking on
the elements and using a game pad. In addition to this main interface, some
HUD elements are rendered in the game world to show interaction hints to
the player, these are controlled by the PlayerController() class as it was easier
to manage them in that way. Figures 4.8 and 4.9 show two examples of the
table screen interface and the game world HUD just explained, another tablet
screen menu can be found in Figure 4.6.

4.8 Sound system
The sound system of the game uses a similar implementation as the other
general systems of the game, like the interface or the game loop management.
It has been implemented through a singleton class SoundManager() that is
accessible from any script of the game and ensures that only one instance of
it is being loaded. This allows for seamless sound transitions between scenes
and avoids sound error like music overlapping.

4.9. 2D art 59

The class integrates dictionaries made with enums that link each enum
key to an audio clip, making it extremely easy to make the calls for a sound
to play. It also creates the audio source components necessary at any time
to ensure that enough sources are loaded while not saturating the system.
The final version of the game implements 13 different sound effects that can
be played at any time and 7 music tracks that are played on different scenes
of the game. These audios were taken from free sources under the Creative
Commons 0 license to avoid copyright infringements.

4.9 2D art

Figure 4.10: Main menu with CRT filter

The 2D art implemented in the game is rather limited, as all elements in
the game except from the interface are 3D elements integrated directly into
the game world. Figures 4.8, 4.6 and 4.10 show the aesthetic chosen for the
interface and 2D elements of the game, resembling the old era of computers,
with simple buttons and limited colors. This aesthetic is intentional as the
mechanisms the user will be interacting with in the game, are from a space
corporation so they are meant to be easy to use and functional, not beautiful.

To enhance this old computer aesthetic, a CRT effect has been added.
To achieve this effect, a post-processing volume has been used for the game
interface elements. This has been done by using a separate camera that only
renders the game’s interface and applies the post-processing to it. This theo-
retically simple task required the use of different URP renderers, as by default
Unity applies any post-processing of the camera stack to the whole image,
not only what one of the cameras render. This is due to the way the render
pipeline works, as post-processing in applied after all elements in the game

60 Game development

are rendered, independently of what camera is supposed to be affected by
the post-processing. This custom render for the interface renders only what
the interface camera sees, applies the post-processing as that camera is done
rendering everything on it and then inserts the resulting rasterized image on
top of the final main camera render, using alpha clipping to merge these two
renders. Figure 4.11 shows a diagram of the process.

(a) Original render pipeline (b) Modified render pipeline

Figure 4.11: Custom render features diagram

4.10 3D art
All the 3D elements of the game have been modeled and texturized using
Blender. The game 3D assets are composed by 60 tiles, 12 for each planet,
10 materials, one spaceship, one main character model, one pad model, a rifle
and a drill. In addition, particle systems and a dome have been created to
encapsulate the explorable area of each planet with custom materials that
resemble a force field and custom materials for both the star and the planets
and the space sky box have been created. Figures 4.12, 4.13 and 4.14 show
the assets used in the game, the solar system with custom procedural planet

4.10. 3D art 61

Figure 4.12: Game assets

Figure 4.13: Space scene assets

Figure 4.14: Dome asset

62 Game development

materials and the dome being used in the scenes. In addition to those assets,
animations have been implemented using mixamo for their generation, having
2 different animation trees, one for the sword and one for the rifle and drill
which include idle, running, jumping, attacking and getting hit animations.

4.11 Results
Even though all enemies that were planned haven’t been implemented due to
complications in the development process, the game has resulted in a satis-
factory experience that can be enjoyed by the player at the same time that
it cover the main objective of the game, showcasing the WFC generation tool
capabilities. The different planets with different tileset and sizes showcase the
flexibility of the tool and its use in a real project, in addition, the lack of time
while developing the game has further showcased the convenience of the tool
as without it, maps of this size and quality wouldn’t have been possible due
to time limitations. Figures 4.15 and 4.16 showcase the different planets made
for the game, showing the final results of both the tool use and the final game.

(a) Mercum planet

Figure 4.15: Final game results 1

4.11. Results 63

(a) Colis planet

(b) Phobos planet

(c) Regio planet

Figure 4.16: Final game results 2

64 Game development

(a) Platum planet

Figure 4.17: Final game results 3

C
h

a
p

t
e

r

5
Conclusions and future work

Índice
5.1 Conclusions . 65
5.2 Future work . 66

This chapter shows the conclusions obtained from this project and the
future work planned for it.

5.1 Conclusions

The main objective of this project was to create a tool that allows users to
generate procedural worlds using the parallelized version of the Wave Function
Collapse algorithm easily without having to worry about its implementation.
The tool has achieved this goal, offering the user a nicely integrated inter-
face within the editor that allows him to create as many tilesets as needed,
modify all the socket types to their will and all of that while having a visual
representation that helps them identify which parameters they are modifying.

The tool has also proved to have significantly higher performance than
the usual implementations, thanks to taking the work load from the CPU and
translating it to the GPU to take advantage of their parallel capabilities. Even
though the parallel approach ended up having its inconvenient due to the way
the algorithm works, a solution was found that, under a limitation on the map
size, works as expected.

65

66 Conclusions and future work

On the other hand, the problems encountered along the way of creating
the parallel approach led to the creation of the chunk mode. This mode
allows the user to generate larger maps with a linear temporal cost. Exploring
this method, helped to better comprehend the problems behind the Wave
Function Collapse algorithm and how solve them, but at the same time, this
implementation wasn’t expected in the original planning so it delayed the
development of the game, resulting on its lack of the original planned enemies.

Speaking about the game, System Scape has achieved the goal of being
an enjoyable experience while showcasing the power of the tool. Its variety of
planets along with different biomes and map sizes demonstrate the power of
the tool while providing an interesting and varied exploration experience to
the players, challenges them to escape the astral system in time.

In general, the project has come to a satisfactory result for both the Unity
tool and the System Scape game.

5.2 Future work
As explained above in section 5.1 we considered that the tool is at a great
state and really useful for user that need procedural generation of levels for
the creation of their games, but there’s still room for improvement, reason
why the tool hasn’t been published on the asset store yet.

The main line of future work on the tool will be as follows:

• Develop a parallel version that works only on CPU side for users that
prefer it.

• Optimize the compute shaders to allow for a bigger tile count than 50.

• Write a full documentation PDF to add to the tool package.

• Publish the tool in the Unity’s Asset Store.

As for the game System Scape, the only future work left is to implement
the enemies originally planned for the game, as they will add a nice touch
of difficulty to the game, incentivizing the player to rush their way through
planets.

Bibliography

[Bra21] B. T. Brave (2021). Infinite Modifying In Blocks. Accessed:
2025-06-14.
URL https://www.boristhebrave.com/2021/11/08/

infinite-modifying-in-blocks/

[Chr24] R. Christie, B. Kitchen, W. Tumilowicz, S. Hooper y B. C. Wünsche
(2024). Procedurally Generating Large Synthetic Worlds: Chunked
Hierarchical Wave Function Collapse. En 2024 39th International
Conference on Image and Vision Computing New Zealand (IVCNZ),
págs. 1–6. IEEE.

[Gum16] M. Gumin (2016). Wave Function Collapse Algorithm. https://

github.com/mxgmn/WaveFunctionCollapse. Accessed January 2025.
URL https://github.com/mxgmn/WaveFunctionCollapse

[Kim19] H. Kim, S. Lee, H. Lee, T. Hahn y S. Kang (2019). Automatic gen-
eration of game content using a graph-based wave function collapse
algorithm. En 2019 IEEE Conference on Games (CoG), págs. 1–4.
IEEE.

[Lóp25] M. V. López y M. Chover (2025). Procedural Generation of 3D
Maps with Wave Function Collapse: Optimization and Advanced
Constraints. En Proceedings of Eurographics 2025. The Eurograph-
ics Association.
URL https://diglib.eg.org/server/api/core/bitstreams/

28237711-7df0-49ef-a6d2-b65aa163bb75/content

[Mar19] Marian42 (2019). Infinite procedurally generated city with the Wave
Function Collapse algorithm. https://marian42.de/article/wfc/.
Accessed January 2025.

[Mer07] P. Merrell (2007). Example-Based Model Synthesis. En Proceedings
of the 2007 Symposium on Interactive 3D Graphics and Games
(I3D ’07), págs. 105–112. ACM, New York, NY, USA.
URL https://paulmerrell.org/wp-content/uploads/2022/03/

model_synthesis.pdf

67

https://www.boristhebrave.com/2021/11/08/infinite-modifying-in-blocks/
https://www.boristhebrave.com/2021/11/08/infinite-modifying-in-blocks/
https://github.com/mxgmn/WaveFunctionCollapse
https://github.com/mxgmn/WaveFunctionCollapse
https://github.com/mxgmn/WaveFunctionCollapse
https://diglib.eg.org/server/api/core/bitstreams/28237711-7df0-49ef-a6d2-b65aa163bb75/content
https://diglib.eg.org/server/api/core/bitstreams/28237711-7df0-49ef-a6d2-b65aa163bb75/content
https://marian42.de/article/wfc/
https://paulmerrell.org/wp-content/uploads/2022/03/model_synthesis.pdf
https://paulmerrell.org/wp-content/uploads/2022/03/model_synthesis.pdf

68 Bibliography

[Odd22] OddMax (2022). GitHub - oddmax/unity-wave-function-
collapse-3d: Implementation of wave function collapse ap-
proach for Unity in 3d space. https://github.com/oddmax/

unity-wave-function-collapse-3d. Accessed January 2025.

[San19] A. Sandhu, Z. Chen y J. McCoy (2019). Enhancing wave function
collapse with design-level constraints. En Proceedings of the 14th In-
ternational Conference on the Foundations of Digital Games, págs.
1–9.

[Stå18] O. Stålberg y R. F. Games (2018). EPC2018 - Oskar Stålberg - Wave
Function Collapse in Bad North - YouTube. https://www.youtube.

com/watch?v=QxzG4fyt7TU. Accessed January 2025.

[Stå22] O. Stålberg y Konsoll (2022). Konsoll 2021: Oskar Stålberg - The
Story of Townscaper - YouTube. https://www.youtube.com/watch?

v=6fQ2pIKN5zI. Accessed January 2025.

[Tri] W. Tristan. Using Wave Function Collapse algorithm for 2D and
3D level generation. https://tristan-w.github.io/WFC-2D-3D. Ac-
cessed January 2025.

https://github.com/oddmax/unity-wave-function-collapse-3d
https://github.com/oddmax/unity-wave-function-collapse-3d
https://www.youtube.com/watch?v=QxzG4fyt7TU
https://www.youtube.com/watch?v=QxzG4fyt7TU
https://www.youtube.com/watch?v=6fQ2pIKN5zI
https://www.youtube.com/watch?v=6fQ2pIKN5zI
https://tristan-w.github.io/WFC-2D-3D

C
h

a
p

t
e

r

6
Project repositories

Here are the links to the repositories of both the Wave Function Collapse Tool
and the video game System Scape.

Wave Function Collapse Unity Tool

System Scape videogame

69

https://github.com/AlvaroChuan/WFC-Unity-Tool
https://github.com/AlvaroChuan/System-Scape

	Contents
	Introduction
	Project Motivation
	Related Subjects
	Project objectives
	Task Planning and Scheduling
	Expected results
	Tools to be used

	Design
	Wave Function Collapse 2D algorithm
	Wave Function Collapse 2D parallelization
	Wave Function Collapse 3D algorithm
	Wave Function Collapse 3D parallelization
	Unity tool
	Videogame

	Tool development
	WFC compute shader adaptation
	Shader management in the CPU side
	Chunks generation mode
	User interface
	Tool results

	Game development
	Player movement
	Resource gathering
	Combat
	Upgrade system
	Spaceship movement
	Game loop
	Interface
	Sound system
	2D art
	3D art
	Results

	Conclusions and future work
	Conclusions
	Future work

	Bibliography
	Project repositories

